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Abstract The fast linear mufin-tin orbital coherent polenlial approximation method 
allied wilh density functional theory (LMTCXPA-DPT) is used IO calculate eleclronic 
structure and cohesive properties of NI-AI random alloys on an underlying FCC lattice in 
all concentration intervals. Binding CUN- oblained in the calculations are used in the 
Debyffirimeisen analysis to determine thermal properties and temperaturedependenl 
Connolly-Williams cluster interactions. The calculated lattice constants, bulk moduli, 
enlhalpies and free energies of formation are in good agreement with experimenr Ihe 
globally and locally relaxed cluster interactions are compared with lhe recults obtained 
from lhe total energy-band calculations for elements and ordered phases. 

1. Introduction 

Despite the considerable progress in ab initio calculations of electronic structures of 
solids, first-principles calculations of the thermodynamic properties of real systems 
may be done in limited cases. In particular, substantial difficulties arise for 
substitutional alloys with short-range order (SRO) effects. But even for completely 
disordered alloys first-principles calculations of thermodynamic properties are rare as 
yet, because of the computational cumbersomeness of ordinary (KKR-CPA) methods 

Recently we proposed a fast version of the LMTO-CPA method [3] which reduces 
the computation time of electronic-structure calculations for random solid solutions 
down to that of the standard LMTO method for elements. Moreover, since our method 
is based on density functional theoly, it is possible to study systems with considerable 
charge transfer and to calculate the energy properties of completely disordered alloys. 
In this paper we demonstrate the advantages of our method as applied to Ni-AI alloys. 

These alloys constitute the basis of an important class of aircraft materials that 
have been actively studied, both experimentally and theoretically, for some decades. 
The main theoretical problem is the nature of interatomic interaction and the 
description of thermodynamic properties in the Ni-AI system. The first ab hili0 
calculation of the electronic structure and cohesive properties of Ni-AI alloys was 
carried out by Hackenbracht and Kubler [4]. Using the ASW method in the density 
functional framework they obtained the magnetic moment and its pressure derivative, 
lattice constants, bulk modulus and the heats of formation of Ni& NiAl and 
AI,Ni compounds. Furthermore, in an attempt to isolate the dominant bonding 
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forces, they decomposed the heats of formation into site- and angular-momentum 
contributions. In contrast to Miedema's semiempirical theory [5], which ascribes the 
prominent contribution to the enthalpy of formation to the p d  hybridization term, 
they concluded that the main binding term for Ni,Al arises from the d electrons of 
Ni; for NiAl the d electrons of AI and Ni provide the leading terms; for AI,Ni the 
dominant role is played by the p and d electrons of Al. 

However, the last conclusion gives rise to doubts because the site-and angular- 
momentum decompositions in their work arise from the similar decomposition of 
the electronic pressure. But the absence of hybridization terms in this scheme is an 
artifact of the theory. Therefore, in this case, further analysis of local and partial 
densities of states is desirable. 

Another way of considering interatomic interactions, which facilitates not only 
the interpretation of experimental data but also the calculation of various physical 
properties, is based on the determination of interatomic potentials. In the first- 
principles methods, such potentials cannot be derived explicitly, but this can be done 
unambiguously in the model pseudopotential method by means of the perturbation 
theory. 

However, first-principles calculations may be used for determination of the 
potential on the fixed lattice, which is necessary for calculations of the configurational 
effects on this lattice in thermodynamic properties. In this case, the total energies of 
a number of atomic configurations are calculazed by the ab hhio method, after which 
the Co~olly-Williams procedure is used for matching calculated total energics to 
their phenomenological expression in terms of the multisite interactions [6]. 

This method was applied to the Ni-AI system for the first time by Carlsson and 
Sanchez [7-91. They calculated various thermodynamic properties of the system, in 
particular its phase diagram on an underlying FCC lattice. Although the shape of 
the Ni-rich part of the calculated phase diagram agrees fairly well with experimental 
observations, the transition temperature is roughly 40% too high and correspondingly 
the free energy is 40% too low. Since in their work Carlsson and Sanchez [SI 
used only two elemene and three ordered phases (Ni, Ni,AI, NA, A13Ni and 
Al in the structures Al, Ll,, Ll,) for the representation of all possible atomic 
configurations in alloys, the question arises as to whether potentials derived in this 
way are applicable to random alloys. Pasture1 er a1 have partially touched upon 
this question in their recent paper [lo]. In addition to the above three structures 
they calculated the energies of the DO, Structure for both Ni,AI and NiAI, phases. 
In the tetrahedron approximation of the Connolly-Williams method this structure 
displays the same correlations as the L1, structure; their energies must, therefore, be 
degenerate. Though the difference for both phases is about 2 Id mol-' (E 250 K), it 
does not prove the convergence of the tetrahedron approximation in the Connolly- 
Williams method for the Ni-AI system. In the paper of Lu and co-workers Ill] where 
ten different structures were used in the Connolly-Williams method there are some 
deviations of cluster interactions from the results of Carlsson and Sanchez. Moreover, 
the question still remains of what the electronic structure of random Ni-AI alloys is 
l i e .  

In our work we attempt to shed light on these points using the previously proposed 
fast LMTO-CPA method allied with the density functional theory. 

The organization of this paper is as follows. In section 2 we outline the LMTO- 
CPA method. In section 3 we present details of the calculation and discuss the results 
for the electronic structure of Ni-AI random alloys. ?b evaluate the temperature 
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dependence of equilibrium lattice separations, coefficients of thermal expansion and 
bulk moduli, in section 4, we use Debye-Griineisen analysis following Moruzzi [12,13]. 
In section 5 we determine locally and globally relaxed multisite interactions and the 
thermodynamic properties of Ni-AI alloys using the Connolly-Williams method. In 
section 6 we present the Ni-rich part of the calculated phase diagram and compare 
it with available experimental and theoretical results In section 7 we summarize our 
conclusions. 

2. The fast LMTO-CPA-DFC method 

The formulation of the CPA equations in the multiple-scattering scheme is most 
convenient for the scattering path operator r (KKR-CPA method [14,15]) or for 
the analogous 'little' Green function g of the LMTO method (in this paper we use 
the notations of [16]). In the single-site CPA, a multicomponent disordered alloy is 
replaced by an ordered system of effective scatterers with the same coherent potential 
function P.  The latter must be determined from the selfconsistent CPA equations. 
The coherent Green function 3 for this system can be calculated as a Green function 
of an ideal crystal [lq 

Here V, is the Brillouin zone volume; S,,,,,,, the matrix of structure constants, 
which contains all information about the atomic positions; and CY denotes the LMTO 
representation [17]. The subscripts are the RL matrices, where R is the radius 
vector of an atom in the unit cell, and L is the common notation for the angular ( 1 )  
and magnetic (m) quantum numbers. The evident E-dependence will hereinafter be 
omitted except in special cases. 

The CPA condition consists in the absence of electron scattering, on the average, 
by the alloy components which are randomly distributed in the effective lattice 

i 

where i denotes the alloy components, ci are their concentrations and gi" is the 
Green function of the i th  impurity in the ideal effective cystal. Such a Green 
function can be found from the Dyson equation 1161 

(3) g'" = [(g")-l + pi" - pCI1-1. 

In this equation P i p  is the usual LMTO potential function for the alloy component i. 
This is determined by solving the Schrodinger (or Dirac) equation for a single atomic 
sphere i. Moreover, this function can be parameterized 

and the potential parameters C, y and A are obtained by solving the Schrodinger 
equation for only one value of energy E, 1171. 
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From equations (2) and (3) we obtain the main LMTO-CPA equation 

zCi[(g*)-l +pi- -Pel-'  = 1". (5) 
i 

Equations (1) and (5) must be solved simultaneously. The traditional way of 
solving such systems consists in the step by step iteration procedure: the initial value 
of P (for example, ea = xi ciPia)  is used for the Brillouin zone integration in 
equation (1) and the resulting value of 6 is used for the coherent-potential function 
recalculation by equation (5). This procedure is carried out until consistency between 
the input and output coherent potential functions is attained. 

20 iterations for 
any energy point. This great price is the main limiting factor for all methods based 
on the CPA. 

We overcome these difficulties by using the method of !+space integration over 
the Weyl uniform mesh 1181 which allows one to carry out the self-consistent 
determination of the coherent-potential function simultaneously with the integration 
procedure. Indeed, if the Ic-points are distributed randomly in the Brillouin zone (or 
in its irreducible part), the integral of the periodic function f(k) may be replaced by 
the sum 

This is a very time-consuming scheme, because we must fulfil 

From equations (1) and (6) we obtain the following recurrent scheme 

8:: = (1 - 1/n)gZmI + ( l / n ) [ B a  - sa(hn)] - ' .  (7) 

Then, we can modify P by adding any new k-point and solving equation (5) for 8,. 
Therefore, equation (5) takes the form 

C C ; [ ( g ; ) - l +  Pia - P:]-l= [(PZ,, - P Z )  + (g3-7-1 (8) 
i 

which is equivalent to equation (5) for n -* 00 provided Iiimn-- P: = PO. Finally, 
the system of LMTO-CPA equations takes the form 

where p < 1 is the mixing coefficient which stabilizes the iteration procedure. 
Using this method, only one Brillouin zone integration is required for the 

determination of the Green function at each energy point. Therefore, our method is 
fast and efficient. 

Once the system of equations (9) has been solved, the alloy components of the 
Green functions gia  can be obtained from equation (3), following which the density 
of states can be constructed as 
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Here N j  is the local partial density of states, for which the usual LMX) expansion 
[U] is used 

N;( E )  = (-27r)-'pi'"( E )  Im gj;,,m( E). 
m 

In equation (11) P;a(E) is the energy derivative of the potential function. 
Moreover, we can also ensure charge DFT self-consistency. The validity of this 

procedure for disordered alloys within the CPA was accurately proved in 111. The 
electronic charge of the alloy components n'(r) is calculated as 

where nt is a core charge density, E,, the bottom of the valence hand, E p  the Fermi 
energy and 4 is a radial wave function inside the atomic sphere [16]. The potentials 
of the aUoy components must be constructed 'independently' from one another (aU 
the effects connected with the existence of the solid solution are included in 3 and 
therefore 9'). 

Knowing the self-consistent charge density, the total ground-state energy of an 
alloy and its thermodynamic properties can he calculated. The usual DFT expansion 
for Em has the form 

where v(r) is the self-consistent potential, r and R the electronic and nuclear radius 
vectors, respectively, Zi the nuclear charge and E, the exchange-correlation energy. 

The electron gas pressure P and hulk modulus B are defined as 

P = -dE,,/dS2 B = -SldP/dQl,,, (14) 

Here S2 is the system volume and S2, the equilibrium lattice volume which can be 
obtained from the condition P(S2,) = 0. 

For the groundstate energy of the disordered alloy we can use the expression [l] 

pus - mt - ci 
i 

where EL, are defined by (13). It is easy to show from (14) and (15) that the electron 
gas pressure 

Pd'V = C' P' . 
i 
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3. Details of calculation and electronic structure of disordered Ni-AI alloys 

We used 500 IC-points in the 1/48 part of the FCC Brillouin zone to solve the system 
of LMTO-CPA equations (9). The IC-mesh was constructed in accordance with Akai 
[18]. As was shown in his paper, the accuracy of the total energy calculation for such 
a h-point distribution is of the order of 0.1 mRyd, which is sufficient for the total 
energy calculations. 

All calculations were done with I,, = 3, instead of as in our previous paper [19], 
where Z,, = 2 was used. As we will show in section 4, better agreement between 
the experimental and theoretical values of lattice parameters is obtained in this case. 
Here we must point out that if l,, is equal to 3 the coherent Green function and the 
effective potential function are non-diagonal matrices even for cubic crystals, because 
the irreducible representation r” appears for both p and f electrons. However, in our 
case these nondiagonal p f  elements are fortunately much smaller than any others. 
Moreover, we are interested only in the diagonal elements of the Green functions 
of alloy components (see equation (ll)), and, as can easily be shown, the influence 
of non-diagonal elements on the diagonal ones is of the next order of magnitude, so 
they can be omitted with only a small decrease in accuracy. 

Describing other details of the calculations, we would like to point out that all 
energy integrals were calculated in the complex energy plane [20]. A rectangular 
contour with 35 energy points and with an imaginaly part equal to 0.3 Ryd was used 
for this purpose. 

We constructed the exchange-correlation potential in the local-density approxi- 
mation (LDA) within the Perdew-Zunger interpolation term [21]. Core states were 
recalculated at all IDA interations. 

In our calculations we usually used the LMTO [17] representation with a = 0. 
But sometimes the convergence was very poor because of some peculiarities of the 
potential-function energy dependence (especially for the Ni&l,5 alloy, where such 
a peculiarity for the a = 0 LMTO representation exists near the Fermi energy). In 
this case, some other LMTO representation can be employed (we have used a, = -#, 
where y is the potential parameter) in order to remove the peculiarity outside the 
energy region of interest. 

The resultant density of states for an Al impurity in Ni (dilute alloy), completely 
disordered Ni&ls ,  Nis6Al,4, Ni,,Al, and Ni,Al compounds are presented in 
figures 1-5. 

Note that the spectra of the dilute alloy and the stoichiometric compound on the 
one hand and the specrra of disordered alloys on the other, are rather different. 

We can point out that for the dilute alloy and for Ni,Al strong hybridization 
between the p electrons of Al and the d electrons of Ni is obsemd in the energy 
region from -0.15 to -0.35 Ryd below EF. This hybridization consists in correlation 
between the positions of the Al p peaks and the Ni d peaks. Moreowr, d- 
d hybridization in the energy region from -0.05 to -0.15 Ryd is also observed. 
Therefore we can speak about the covalency of chemical bonds between the Al 
atoms and their nearest 12 Ni neighbours (Ll, type structure for Ni,AI and a single 
impurity in the FCC lattice for the dilute alloy). 

In completely disordered concentrated Ni-AI alloys AI atoms are surrounded 
by both Ni and Al’atoms. All peaks in local state densities are smeared out and 
hence only weak hybridization is observed. Therefore the local configuration 
leads to the strong hybridization of the electronic structure. The latter stabilizes 
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Figom 1. Local densities of states (DOS) for AI 
impurity m Ni. (a) Panial DOS on the Ni atom, (b) 
paaial DOS on lhe AI atom. (1) s, (2) p and (3) d 
electrons. 

pisur 3. The density of states for NigSAIH. (a) 
lbtal ws, (b)  partial DOS on the Ni atom, (c) 
partial DOS on the AI atom. (1) s, (2) p and (3) d 
electmns. 

Flgnre 2. The density at states for NiBAb (U) 

BtaI DOS, (b) partial DOS on the Ni atom, (c) 
panial ws on the Al atom. (1) s, (2) p and (3) d 
electrons. 

Figure 4. The densily of states for NiTsAly. (a) 
Total DOS, (b) pariial 00s on the Ni atom, (c) 
partial DOS on the AI atom. (1) s, (2) p and (3) d 
electrons. 

the corresponding atomic structure (as will be shown in section 5, the enthalpy of 
formation for Ni,Al is lower than the mixing enthalpy for the Ni,,AI, alloy). From 
this point of view, strong SRO effects in the Ni-AI system can be also explained by 
the tendency of Al atoms to be surrounded by Ni in Ni-rich alloy. 

The resulting spectra for AI-rich Ni-A alloys and for the equiatomic alloy Ni&I,,, 
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F@m 5. The density of states for Ni,AI. (a) %tal 
Dos, (b) partial Dos on the Ni atom, (c) partial DOS 
on the AI amm. (1) s, (2) p and (3) d electrons. 

are presented in figure 6. It is well known that for an Ni impurity in AI, a virtual 
bound 3d state exists at an energy N 0.15 Ryd below EF [22,23]. For completely 
disordered concentrated AI-rich alloys such a state is also observed (see figure 6(u)). 
It is widened and displaced to the Fermi level with an increase in Ni concentration, 
and the Ni-lie d band is gradually formed from this virtual state. 

Another important characteristic of the electronic structure is charge transfer. It 
is obvious that the difference between the structure of Ni and AI electronic valence 
shells must lead to substantial charge transfer in Ni-AI alloys. Unfortunately, there 
is no single way to determine charge transfer because it is impossible to divide the 
crystal unambiguously into regions related to each atom. 

However, in the MA we may observe the general tendencies of charge transfer if 
we use the same WignerSeitz radius ratio for different atoms in all compositions. In 
this case, charge transfer is defined mostly as the difference between the number of 
electrons in an isolated atom and the corresponding Wigner-Seitz sphere in a solid. 

On the other hand, in the ASA there is an additional relationship between the 
values of charge transfer Aqi for different atoms 

Figure 6. %tal densities of states for equiatomic 
and AI-rich alloys. (U) NisAIB, (b) Ni&l~~, (c) 
NiroAIro. 

c c ; A q ;  = 0 (17) 
i 

where ci is the atomic fraction of atoms of i-type. It is easy to show that equation (17) 
leads to the 'unnatural' concentration dependency of Aqi. In particular, Aqi -+ 0 
when ci + 1 independently of the values of Aqj (j # i). Therefore, there is no 
reason to compare Aqj for alloys with different composition. 

Nevertheless, this difficulty with the definition may easily be overcome in the 
following way. Let us consider a two-component alloy (for a many-component alloy 
this can be done in the same manner). We may define AqA(c), where c cA, as 

AqA(c) = 2(1- c)Aq(c). (18) 
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Here we introduce a new function Ag(c). By substituting equation (18) in 
equation (17) we obtain 

A q B ( c )  = -2cAg(c). (19) 

Since A < ( , ) ,  in contrast to Aq,(c),  does not depend on the type of atom and 
may be an arbitrary function of c, it is very convenient to choose it as the definition 
of charge transfer. 

In table 1 we show the values of Ad for Ni-AI alloys. We see that in this system 
the normalized charge transfer Aq(c) depends very slightly on the concentration. In 
contrast, the atomic configuration of the alloy has considerable influence over the 
value of charge transfer: A@(c) for the ordered Ni,Al is about twice as great as for 
the disordered Ni&I ,  alloy. 

Table L The charges of the Ni and AI atomic spheres (Aq,qi and Aqd) and normalized 
charge transfer Ai for NI-AI alloys. 

~ ~~~ ~~~~ 

Alloys &"i A I A i  lad 
AI impurity in Ni 0.0 0.450 0.225 
Ni,Al -0.162 0.488 0.325 
NiaAls -0.021 0.246 0.134 
NiXAlz -0.068 0203 0.135 
NiroAIso -0.137 0.137 0.137 
NinAIis -0.203 0.068 0.135 
NidUm -0.246 0.021 0.134 

Table 2 Panial decomposilion of the valence electrons in AI and Ni WignerSeitz 
spheres for random NI-AI alloys. 

Al Ni 
CAI 
(at.%) 6 P d f S P d f 

8 0.95 1.314 0.400 0.09 0.673 0.766 8.499 0.083 
2.5 0.959 1.358 0.398 0,081 0571 0.784 8.541 0.074 
50 0.981 1.418 0.397 0.066 0.673 0.812 8.592 0.059 
75 1.029 1.446 0.403 0.055 O.hX4 0.820 8.648 0,049 
92 1.070 1.450 0.412 0.048 0.695 0.812 8.693 0.042 

The partial decomposition of the charge in the AI and Ni WignerSeitz spheres is 
presented in table 2. For the same reason as for Aqi there is no sense in comparing 
these values for different concentrations. Therefore we cannot directly relate these 
results and the experimental charge transfer data [24] in which an increase in the 
number of Ni d electrons was found only in the interval from 0 to 50 at.% Al. 
However, considering the relative position of the Ni-like d band and the Fermi level 
at different concentrations of Al (figures 1-5), we point out that the latter shifts 
toward the Ni d-band edge with increase of AI concentration. So the unoccupied 
part of this band decreases and for NiSUAl,, alloy it is practically full. This indirectly 
agrees well with the experiment. 
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4. Thermal properties OF N i 4  alloys 

The possibility of local-density functional band-structure self-consistency in the 
framework of the CPA [1,2] reveals the way to the direct calculations of 
thermodynamic and thermal properties of disordered alloys. These properties may 
also be obtained with the help of the Connolly-Williams method (CWM) [6] from 
the set of total-energy band calculations of elements and ordered compounds. 
However, first, such calculations are highly cumbersome and, second, the question 
of convergence of the CWM [g also arises because it is not clear beforehand how 
sensitive the system is to changes in its atomic contiguration. 

For Ni-AI alloys, the CWM was employed by CarIsson and Sanchez to calculate 
the effective pair interaction (EPI) [7], free energy of formation, phase. diagram [SI, 
and other thermodynamic properties 191, and recently by Pasture1 er al [lo] and Lu 
el al [Ill for phase diagram calculation. AU these works (with the exception of [ll]) 
were carried out in the tetrahedron truncation of cluster interactions, leading to a 
set of five interactions obtained from a set of total energies of two elemena (AI and 
Ni) and three compounds (AI,Ni, AINi, Ni,AI). Despite some discrepancies between 
calculated and experimental data (for instance, in the transition temperatures and free 
energy of formation [SI), Carlsson and co-workers did not verify the sufficiency of 
tetrahedron truncation in the CWM for this system. In order to clear up this question in 
particular we decided to employ the CWM also with tetrahedron truncation but on the 
basis of the total energies of completely disordered solid solution for thermodynamic 
calculations. Apart from that, the CWM allows us to take into acwunt short-range 
order (SRO) effects which are sufficiently strong in Ni-AI alloys. 

Since in the calculation of thermal properties, accuracy in obtaining the binding 
curves is very important, we have done calculations for a set of five values of lattice 
parameters with step size z 0.1 au in the vicinity of the equilibrium value for each 
concentration of AI (8, 25, 50, 75, and 92 at.%). In this case, as can easiIy be 
seen, the regions of total-energy definition for different concentrations were found 
to be separated from one another. Therefore, to avoid mistakes in the extrapolation 
of the binding-energy curves for alloys with different concentrations on the same 
lattice constants, the RoseSmith universal function 1261 was used. This function 
is convenient because it is uniquely defined hy parameters corresponding to the 
equilibrium state. 

As a basis for the analytical expression of the RoseSmith curve the function 
defined in [27l was chosen: 

a' = (l/X)[a/a, - 11 X = [-E,/9BuS2,]1/2 

where a", B,,, Q,, and E, are the equilibrium lattice constant, bulk modulus, 
equilibrium atomic volume and cohesive energy, respectively. E, is the energy 
of the system with the atoms removed one from another to infinity. 

However, in the determination of the thermal properties the function (20) turned 
out to be inconvenient because of the gap in the thud derivative Elot(a*) at a* = 0, 
which leads to trouble in the definition of the Grtlneisen constant [lo]. Therefore in 
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equation (20), additional terms smoothing the third derivative were included: 

3(1+ 6)X2a*2e-'" a* > o  
36XZa"ee-" a* CO 

6 = (3X7 - 9x2 - 1)/9X2. 

Here y is the Gruneisen constant. 

properties of the disordered alloys are summarized in table 3. 
The parameters of the RoseSmith curve corresponding to the ground-state 

Table 3. The equilibrium laltice parameter, bulk modulus. and Grimeisen constants 
derived from m A - D F r  calculations for disordered NI-AI alloys on an Foc lattice. 

C QO Bo 
(at.% AI) (au) (bar) y 

8 6.657 2285 2.22 
25 6.737 2007 2.13 
50 6.930 1565 1.98 
75 7.213 1173 2.19 
92 7.450 923 2.25 

lb take into amount the phonon contribution we used the Debye-Griineisen 
model following Moruzzi and co-workers 112,131. However we corrected this model 
by including the temperature dependence of the Griineisen constant, which increases 
in comparison with its low-temperature value approximately by 4 at one third of the 
Debye temperature OD [ZS] 

y ( T )  = ̂ /LT + 4f/(l+ f) f = eq(-@D/3T) (22) 

~ L T  = -1 - (n/2)(aZP/anz)/(aP/aR) Bo = 41.63[RB/M]"Z (2) 

where [IO] 

and M is the atomic weight. 
In figure 7 we show the calculated room-temperature lattice parameters and bulk 

moduli for disordered Ni-AI alloys after Debye-Griineisen analysis of the binding 
curves. First of all it is necessary to note that taking into consideration the f electrons 
leads to both a decrease in the calculated lattice parameters and an increase in the 
bulk moduli in comparison with the results of our previous work 1191. The analogous 
effect of including high4 components in the calculation was also observed in 111. It 
can easily be seen from figure 7 that there is some deviation of the concentration 
dependences of the calculated lattice constants and bulk moduli from the experimental 
data [29-3SJ In particular, the theoretical values of the lattice parameters increase 
with AI concentration more quickly than the corresponding experimental ones and 
vice versa (the calculated bulk moduli fall more rapidly than the experimental values). 
In our opinion, this divergence is the consequence of the actually existing SRO effecis 
in the Ni-AI alloys which were not taken into a m u n t  in the theoretical calculations. 

In figure 8 we show the calculated room-temperature coefficients of thermal 
expansion for the Ni-rich region where it makes sense to compare them with available 
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.. e 1% 8.L a& 0.;. o,;. 0.k 0,;s 

Atomic sonsentrotion of AI Atomic concentration of AI ” 
Figure 7. Room-temperature equilibrium lattice Figure 8. Room-Iempsrature cocBicients of thermal 
mnslants and bulk moduli for Ni-AI alloys. expansion for Ni-rich alloys. l h e  values for pure 
0 denotes calculated valuce A denotes the Ni were calculated fmm the binding uuve obtained 
apaimenlal dam for lattice constants oi Ni-AI With the help of the Cnnolly-Williams method. 
solid mlutions [29] and A denola the experiment FxperimenIal values are denoted by A I” [30] 
for NiJAl p]. + denotes the aperimenlal bulk and by A from p6]. 
moduli of Ni-rich alloys pl]) and A denotes the 
apaimenml dab3 for NI& os, D, I(s and w mme 
f” p2], p3], [34] and pS] respectively. 

experimenls [36,30]. On the whole, the slight tendency for the coefficients obtained 
in calculation to grow with AI concenuation agrees well with the experimental data. 
However, it should be noted that there is too great a dispersion of the latter. In 
addition, for real alloys a peculiarity in the concentration dependence of the thermal 
expansion must be observed when caused by the transition from ferromagnetic (low 
AI concentration) to paramagnetic alloys (high AI concentration). It is obvious that 
these effects cannot be reproduced in our spin-restricted calculations. 

5. Multisite interactions and thermodynamic properties of NI-AI alloys 

Knowing the binding energy curves for five concentrations of AI (8, 25, 50, 
75, and 92 at.%) as a function of volume and temperature, we used the CWM 
for the determination of configuration- and concentration-independent potentials 
(interactions) on the tetrahedron of the FCc nearest-neighbour sites from the set 
of equations 

A 

where V, is the n-body temperature-dependent interaction, and [,, is the correlation 
function which is given by [,(c) = (2c- 1)” for a completely disordered alloy (here 
we took c E cNi). 
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Following Carlsson's work [A we restored two types of interaction: globally and 
locally relaxed. In the first case it is supposed that the volume of the cluster in 
the alloy does not depend on the atomic configuration in the cluster. Therefore 
the set of equations must be solved with the Etot(c,n, T) of the same volume Cl. 
Hence, it follows that the globally relaxed potentials V$ are volume-dependent. In 
contrast, for a locally relaxed potential it is supposed that the volume of the cluster 
in alloys is determined by its atomic configuration and in the simplest approximation 
(which we make here) it is equal to the equilibrium volume of the alloy of the 
same concentration. Hence, in this case it is necessary to substitute ELt(c,T) 
corresponding to the equilibrium lattice parameter in the set of equations that gives 
the volume-independent interactions. 

In figure 9 we show V,b and VA at 0 and 1400 K in comparison with the results 
of Carlsson and Sanchez [8] (the results of Pasture1 et a1 [lo] are very close to those 
of the latter). It can easily be seen that the temperature has very little influence 
on their values especially in Ni-rich regions. It is quite possible, however, that the 
Debye-Griineisen model is too simplified for such high temperatures. 

I "I 7500m J 
-. --...._ *t4h "lord 

'. 5000 

I 
0.M) 0.25 0.50 0.75 1.00 ,-. 

Y1800 ) kFlOlb m,oz..d 

-600' I 
0.00 0.25 0.50 0.75 1 .CO 

Atomic concentration of AI 

Figure 9. Globally and laeally relaxed cluster interactions for the Ni-AI system at 0 K 
(-) and at 1400 K (- - -). (0) Pair interactions (Vf, Vi); ( b )  triangle interactions (Y, q); (c) tetrahedron interactions (Y, 4'). . . . . . . correspond to Carlsson's globally 
relaxed interactions. 

The significant difference between the locally and globally relaxed interactions 
is more than an deserves attention. In particular, &g is more than twice and 
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Fguw 10. Concentration-dependent globally (-) and locally (- - -) relaxed eEective 
pair interactions at 0 K. . . . . . . is Cadsson’s result [7] lor locally relaxed pair interaaions 
The values of the globally relaxed effective pair inleraclions at each concentration of AI 
were derived for the corresponding equilibrium wlume. 

order of magnitude greater than sg. However, it is obvious that direct comparison 
of these potentials makes no sense, because they arise from different expansions. A 
comparison with Carlsson’s results in that case is more interesting. 

First of all let us mention that the values of V; are very close to each other 
and their dependences on the lattice parameter are similar, though the potentials, 
obtained in our calculations are a bit smaller than those obtained by Carlsson [SI. 
At the same time one can see an essential difference between threeand four-atom 
interactions both in their behaviour and values. In our case, V: is over an order of 
magnitude less than Carlsson’s. Moreover, in contrast to Carlsson’s 1.;” our potential 
has an unexpected minimum for the values of the latter parameter, which correspond 
to an Al concentration of about 65%. It is difficult to understand such non-monotonic 
behaviour, considering that this potential actually describes some multisite interaction 
effects. These effects must evidently correlate with the overlapping integrals, which 
decrease as the interatomic distance increases. In fact, multisite potentials have 
part of this information, which is, however, reflected in the general order of values. 
The potentials’ behaviour can be determined by tendencies in the configurational 
behaviour of alloys. The difference between the results for sg and Vf, obtained 
from various sets of alloy configurations, testifies to a rather bad mnvergence of the 
Connolly-Williams (cw) procedure in that case. It can probably be determined also 
by mistakes in electronic-structure calculations for disordered alloys because of the 
single-site approximation. The latter describes rather roughly the effects of the local 
surroundings. 

Unfortunately, in [7] the values of locally relaxed interactions are not shown. 
However, they must be very close to the interactions obtained in this paper because 
of the closeness of the EPI parameters (see figure IO). In particular, the value of 

is determined by the value of the EPI for pure Ni, the general slope of the curye 
depends on the value of 1:’ and the deviation from the linear dependence of the EPI 
is determined by Vi. The first two interactions, and <, are in a good agreement 
with Carlsson’s. At the same time, the value of Vi obtained by Carlsson must be 
essentially higher than ours, which is about an order of magnitude less than Qg (see 
figure 9). It is necessary to mention again that the direct comparison of globally and 
locally relaxed potentials makes no sense. In this case the high value of Vi reflects 
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more an effective concentration dependence of the mixing enthalpy than the values 
of three-body or configurational interactions. 

Generally, from this point of view, it is more convenient to use the globally relaxed 
interactions for the analysis of ordering effecis. In particular, locally relaxed potentials 
do not allow the evaluation of the influence of ordering effects on the value of the 
equilibrium lattice parameter because of their volume independence. However this 
can easily be done with globally relaxed potentials, using either these potentials or 
EPI parameters, calculated on their basis. Such an evaluation seems very interesting, 
because diffuse scattering of experimental data in Ni-AI alloys (in the Ni-rich region) 
[37] shows the existence of strong SRO. Thus, the Cowley-Warren parameters, which 
are usually determined through pair correlation functions gi as 

a i  = (Si - cZ)/c(l- e )  (25) 

are equal to -0.07 and -0.101 for T = 673 K and cM = 7.3 and 10.5 at.% 
respectively. This is very close to the limit values of ai = -c/(l - c): -0.078 
and -0.117. 

In the first order of approximation the SRO energy AE, ,  for the FCc lattice is 
expressed through the EPI as 

where 4 is the EPI on the first shell. 
From equation (23) one can see that the existence of SRO in Ni-AI alloy must 

lead to a general decrease of the energy of the alloy because c$ > 0 (see figure 11). 
Besides this, considering the volume dependence of the EPI (figure 11) in the Ni- 
rich region we can conclude that SRO effects must lead to the effective decrease of 
the lattice parameter of alloys with AI concentration greater than 10 at.%, while 
for alloys of lower AI concentration the lattice parameter must change very slightly. 
Moreover, as AEsRo - cz (ai -+ -c/(l - c)), the existence of SRO in general will 
lead to a decrease in the slope of the cume of the equilibrium lattice parameters 
with concentration. It is obvious that in this case the decrease in bulk modulus will 
become less (figure 7), since the decrease in the lattice parameter will lead to an 
increase in the electron density on the Wigner-Seitz spheres. 

The enthalpy of formation of solid solution is another thermodynamic property 
which is essentially influenced by SRO effects For the completely disordered alloy it 
is calculated directly from the values of full energies obtained by the LMTO-~PA-DFT 
method However, for pure components some dficulties arise in our calculation 
scheme [19]. Another way consists in the calculation of the enthalpy through the 
CWM. In that case we can also easily take into account the contribution of SRO 
effects. The results of calculations at T = 298 K for all concentrations in the Ni-rich 
region for the completely disordered solid solution and for the solid solution with sRO 
are shown in figure 12. 'RI obtain the contribution of sRO effects we minimized the 
free energy of the alloy over variational parameters in the tetrahedron approximation 
of the cluster variation method (CVM). Let us mention that the calculated values of 
the Cowley-Warren parameters are very close to their limit values, which corresponds 
to the experimental data [37]. The good agreement between the experimental data 
and theoretical results with the SRO effects taken into account for enthalpies of solid 
solutions of AI in Ni and NbAI can be seen from figure 12. 
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expcrimental dala from 1381; A: direct Bnt- 
principles calculations of enthalpy of formation for 
NiSAI. 

It is interesting to consider the Carlsson and Sanchez paper [SI, where they 
calculated the enthalpy of formation of completely disordered solid solutions of Ni-AI 
in an analogous manner through the CWM on the basis of a set of completely ordered 
phase energies. Their values of the enthalpies are higher than the corresponding 
experimental data (for 10 at.% AI = 0.5 kcal mol-’, about 14% of the experimental 
value). The source of such overestimation is ambiguous. On the one hand, the great 
difference between our V: and V t  and Carlsson’s values indicates the insufficiency 
of the tetrahedron approximation in the CWM for the Ni-AI system. But, on the 
other hand, the direct calculation of the enthalpy of the ordered Ni,AI phase (by the 
programme for compounds) yields a lower value for the latter: -11.4 kcal mol-’, 
which is, however, in very close agreement with other theoretical caleulations: 
-10.83 kcal mol-’ in [4], -11.48 kcal mol-’ in [lo] and -11.1 kcal mol-’ in 
[39], which is also roughly 1520% too high. At the same time, if we know the 
Cw interactions, we can easily obtain the enthalpy of formation of the completely 
ordered phase Ni,AI. This value (calculated through our cw interactions) is very 
close to the corresponding experimental result (see figure 12). The reason for such an 
overestimation of the enthalpy of Ni,AI in first-principles calculations is not clear yet. 
However, it is obvious that it must lead to common overestimation of cw interactions 
and hence to the overestimation of the thermodynamic properties calculated by them. 

6. Phase diagram 

The possibility of the reproduction of the phase diagram is, however, of the highest 
interest. Such calculations for the Ni-AI system were done in detail by Carlsson and 
Sanchez [SI, Pasture1 er a1 1101 and Lu el a1 [ll]. Therefore, it is more interesting for 
us in this section to  show the influence of different approaches in determining cluster 
interactions on the calculation of a phase diagram. For this purpose we calculated 
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only the Ni-rich fragment of the phase diagram with both locally and globally relaxed 
cluster interactions. To obtain the phase boundaries we used the natural iteration 
method in the CVM, where the free energy of formation was written 1401 as 

L(z) = rln(2) - z (27) 

where z i j k , ,  yii,and zi are the four-, two- and one-site probabilities of finding the 
cluster in the ( z j k l ) ,  (ij) and (i) configurations (i = l(2) when the site is occupied 
by an A(B)-type atom). The interaction parameters, e i j k r ,  used in equation (24), can 
be expressed through pair potentials q2 and parameters a and b, which contain the 
contribution of multisite interactions in the following form 

Ell12  = M l +  a )  Cl172  = 2 E * *  Et*n = ;cIz(l + b ) .  (28) 

qz = -;% a = (2T$ - V,)/V, b = (2V, + V,)/V,. (29) 

These parameters are expressed through cw interactions as 

Figure U. The fragmenl of the NI-AI phasc diagram in the Ni-rich comer. Theoretical 
boundaries of solubility are shown by - for globally relaxed interactions and - - - 
for locally relaxed interactions. The experimental boundaries of solubility are designated 
by . . . . . . , 

The greatest difference between calculations with globally and locally relaxed 
interactions lies in the high-temperature region (figure 13). The result, which 
corresponds to the globally relaxed potential, agrees better with experimental data. 
The region of two-phase equilibrium in both cases at T = f T, (where T, = 1847 K is 
the computed ordering temperature) is about 6 at.%, which agrees well with Carlsson's 
results [SI and is about two times less than the corresponding experimental data. In 
spite of the essential deviation of cw potentials (in particular in sg, obtained in our 
calculations and by Carlsson [SI), there is, in general, good agreement between phase 
diagrams reproduced. In addition, our calculations show that the phase diagram is 
practically insensitive to the temperature dependence of the potentials. %king into 
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consideration that the calculated enthalpy of formation is in good agreement with 
the experimental one, we can conclude that the biggest error in the phase diagram 
reproduction is contained in the calculation of the entropy within the tetrahedron 
approximation in the cvhi. It is also indirectly proved by Carlsson's results [SI for 
the transition temperature and free energy, which are about 40% higher than the 
experimental ones, though the error in the calculated enthalpy of formation is only 
about 20%. 

'Ib verify this conclusion we also calculated the free energy of formation at 1273 K 
at the Ni-rich end for an FCC solid solution by the cvM. The results are presented in 
table 4. In contrast to the enthalpy of formation (figure 12) in this case we found a 
deviation of about 20% from the experimental data, the temperature dependence of 
interactions having almost no influence on the results. Thus, in our calculation of the 
free energy of formation we incurred an additional error of about 20% in comparison 
with enthalpy of formation, as is the case in [SI. 

I A Abrikosov et a1 

Table 4. Free energy of formation for Ni-AI solid solulion at I273 K (in kcal mol-'). 
Experimental values laken from 1381. 

CM ( a W  A%I, A-% 
5 -231 -212 

10 -433 -3.85 
14.3 -5.87 -5.09 

7. Conclusions 

In this study we have applied the fast LMTO-CPA method together with density 
functional theory to calculate the electronic structure, thermal and thermodynamic 
properties of Ni-AI random alloys. First of all we have revealed that the hybridization 
between p electrons of Al and d electrons of Ni reduces with AI concentration and 
disordering in the Ni-rich region. In our view in both cases this fact is related directly 
to the change in the atomic configuration. In particular, the hybridization increases 
when AI atoms are surrounded by atoms of Ni. The additional hybridization with 
ordering implies the increase of covalent contribution to the interatomic forces and, 
consequently, the general decrease of the energy of an alloy. Thus, the nature of 
strong short-range order effects in Ni-rich alloy becomes clear. 

'Ib calculate the thermodynamic properties of the Ni-AI system we have used 
the Connolly-Williams method, which has been applied earlier by Carlsson and 
co-workers to this system but on the basis of total energy-band calculations of 
elements and ordered phases. Although our results for the thermodynamic properties 
and phase diagram are in close agreement with Carlsson's we have found strong 
differences between the corres nding globally and locally relaxed interactions, in 
particular for bg, Vj and V r  It is possible that this discrepancy arises from 
the insufficient convergency of the tetrahedron truncation in the CWM. But we 
cannot exclude the error coming from the single-site approximation in our LMTO-CPA 
calculations which is reflected in the difference between the values of the enthalpy of 
formation of the ordered Ni3AI phase calculated by the LMTO-CPA and the ordinary 
WO method. 
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It is also very interesting that the temperature-dependence of the interaction 
parameters, enthalpy and free energy of formation, as well as the phase diagram, 
accounted for by the DebyeGriineisen analysis of the binding curves, is very slight, 
and the greatest error arising in calculations of the free energy of formation and the 
phase diagram is the result of the lack of accuracy in the entropy calculation by the 
tetrahedron approximation in the CVM. 
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